Diagonalbidang atau diagonal sisi adalah ruas garis yang menghubungkan dua titik sudut yang berhadapan pada setiap bidang atau sisi balok. Sama halnya dengan kubus, balok memiliki 12 Diagonal bidang. Diketahui panjang AB= 12 cm, BC = 8 cm dan AE = 5 cm. Hitunglah: a. Panjang AF b. Panjang AC c. Panjang AH. Pembahasan: a). Panjang AF dapat Kelas 12 SMADimensi TigaJarak Titik ke GarisDiketahui kubus dengan panjang rusuk 12 cm. K adalah titik tengah rusuk AB. Jarak titik K ke HC adalah .....Jarak Titik ke GarisDimensi TigaGEOMETRIMatematikaRekomendasi video solusi lainnya0156Diketahui kubus dengan panjang rusuk 6 cm. Jara...0148Diketahui kubus ABCD. EFGH dengan panjang rusuk 8 cm. Jar...0140Diketahui kubus ABCD EFGH dengan panjang rusuk 6 cm. Jara...0348Diketahui kubus dengan panjang rusuk 6 cm. Jara...Teks videoHalo Kapten pada soal kita diberikan kubus abcd efgh dengan panjang rusuk 12 cm K adalah titik tengah rusuk AB dan kita akan menentukan jarak titik k ke garis HC kubus abcd efgh nya seperti ini dengan tengah-tengah AB kemudian kita Gambarkan garis AC dan jarak titik k ke garis HC adalah panjang ruas garis yang ditarik dari titik A yang tegak lurus terhadap garis dengan kita misalkan saja ini adalah titik p dengan Cafe tegak lurus AC maka jarak titik k ke garis HC adalah bentuk segitiga untuk karena Dari mana kita punya kan panjang diagonal bidang dari suatu kubus yaitu panjang rusuk 3 √ 2 maka panjang sisinya adalah 12 cm berdasarkan segitiga siku-siku ABC dengan sisi miring maka c k = akar dari jumlah kuadrat sisi-sisi lainnya yaitu k b kuadrat ditambah B C kuadrat maka di tengah-tengah AB berarti sama panjang dengan AB panjangnya berdasarkan setengahnya dari 12 cm yaitu 6 cm punya masing-masing panjangnya dan kita akan peroleh di sini. Yang mana akar 180 bisa kita Sederhanakan menjadi 6 akar 5 cm untuk panjang HK disini kita perhatikan pada saat ini membentuk persegi panjang adalah sudut siku-siku berhenti di sini juga merupakan sudut siku-siku berarti segitiga h k adalah segitiga siku-siku dengan a. Hanya ini juga merupakan diagonal bidang pada kubus, maka hal-hal yang panjangnya 12 cm kita terapkan teorema Pythagoras pada segitiga siku-siku haknya maka K adalah sisi miring kita akan memperoleh haknya gimana 12 akar 2 kuadrat berarti 12 2 dikali 12 akar 2 akar 2 dikali akar 2 adalah 2 sehingga hanya = akar 324 yaitu = 18 centi meter, selanjutnya kita misalkan saja di sini adalah sudut yang sebesar Alfa dan kita terapkan aturan cosinus pada segitiga c k h, maka kita akan memperoleh kos dengan rumus seperti ini tinggal kita ganti nilai-nilainya yang sudah kita peroleh di sini kita hitung cos Alfa = 1 per akar 2 yang mana akar2nya kita rasionalkan dengan cara kita kalikan disini akar 2 dengan √ 2 * penyebut dikali akar 2 maka x √ 2 maka a = 1 per 2 x akar 2 untuk segitiga siku-siku menggunakan konsep trigonometri pada segitiga siku-siku maka Sin Alfa = Sisi depan Alfa per sisi miring yaitu di depan Alfa nya kita punya Sisi Cafe dan Sisi miringnya adalah HK Nah karena kau tanya disini = 1/2 √ 2 dan kita ketahui 1/2 √ 2 nilai dari cos 45 derajat sehingga alfanya = 1 Sin Alfa adalah Sin 45derajat yang juga = 1/2 √ berdasarkan rumus berarti Sin Alfa nya Kita kan punya 1 per 2 akar 2 in = KP perhatiannya adalah 18 dan kita kalikan kedua Luasnya sama sama dengan jadi 9 akar 2 = KP atau bisa kita Tuliskan Cafe = 9 √ 2 cm Jarak titik k ke garis HC adalah panjang yaitu 9 akar 2 cm yang sesuai dengan untuk soal ini dan sampai jumpa soal berikutSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Diketahuilimas segiempat beraturan T.ABCD, dengan ruas garis AB = BC = 5√2 cm dan TA = 13 cm. Hitunglah jarak titik A ke ruas garis TC
PembahasanDengan menggunakan cara membagi ruas garis menjadi sama panjang, garis akan dibagi menjadi bagian sama panjang sebagai berikut Sehingga, panjang setiap bagian adalah Perhatikan langkah berikut! Pada gambar dapat dilihat, panjang Dengan demikian, panjang setiap bagian adalahDengan menggunakan cara membagi ruas garis menjadi sama panjang, garis akan dibagi menjadi bagian sama panjang sebagai berikut Sehingga, panjang setiap bagian adalah Perhatikan langkah berikut! Pada gambar dapat dilihat, panjang Dengan demikian, panjang setiap bagian adalah Diketahuipanjang ruas garis AB adalah 12 cm. Jarak ruas garis HD dan EG merupakan ½ garis. 12 3 cm 9 cm p C D E A B 6 cm 4 cm 3 cm x A x E C B D y 2 cm 10 cm 6 cm 4 cm 131. 125 24 _____ 4. Panjang ruas garis AG adalah A 153 cm. Bagilah ruas garis AB tersebut menjadi 5 bagian sama panjang Pembahasan No 3.
Jarak dua titik dalam pelajaran matematika dapat dihitung menggunakan rumus Phythagoras. Foto pembahasan geometri pada pelajaran matematika, perhitungan jarak dua titik tentunya sudah tidak asing dua titik adalah perhitungan yang digunakan untuk mengukur jarak dari suatu titik ke titik lainnya. Perhitungan ini dapat dilakukan dalam mengukur jarak titik pada garis dan suatu jarak antara dua titik dapat dilakukan menggunakan teorema Phythagoras. Untuk memahami teorema Phythagoras dan penggunaannya untuk menghitung jarak dua titik, simak penjelasan di bawah PhythagorasDikutip dari buku Matematika Belajar Ringkas Matematika yang ditulis oleh Ayubkasi Soromi, dkk teorema Phythagoras adalah suatu aturan matematika yang dapat digunakan untuk menentukan panjang salah satu sisi dari sebuah segitiga dari teorema ini diambil dari penemunya, yaitu Phythagoras. Phythagoras adalah seorang ahli matematika dan filsuf yang menyatakan bahwa kuadrat panjang sisi miring pada bangun segitiga siku-siku sama dengan jumlah kuadrat panjang sisi-sisi buku Metode Hafalan Di Luar Kepala Rumus Matematika SMP Kelas 7 oleh Andrian Duratun Kausar dan Andriana Lestari, ‎ rumus teorema Phythagoras adalaha sisi a pada segitiga siku-sikub sisi b pada segitiga siku-sikuc hipotenusa sisi miring segitiga siku-sikuJarak Dua TitikMengutip dari buku Matematika yang disusun oleh Betris Hs Nggole, konsep dari jarak dua antara dua titik dapat dipahami melalui gambar dan penjelasan berikut dua titik adalah panjang garis yang menghubungkan kedua titik tersebut. Foto Buku Matematika karya Betris NggolePada gambar tersebut, terdapat dua titik. Dua titik tersebut adalah titik A dan Titik B. Kedua titik tersebut membentuk garis garis g terdapat ruas garis AB. Jarak antara titik A dan titik B ditunjukkan oleh panjang ruas garis AB. Berdasarkan penjelasan tersebut, dapat disimpulkan bahwa jarak antara dua titik adalah panjang ruas garis yang menghubungkan kedua titik Menghitung Jarak Dua Titik dengan Rumus PhythagorasSeperti yang disebutkan sebelumnya, jarak dua titik dapat dihitung menggunakan teorema Pythagoras bila terkait dengan segitiga memahami cara menghitung jarak antara dua titik dengan rumus Phythagoras, simak contoh soal berikut kubus ABCD. EFGH. Foto Buku Matematika karya Betris NggoleDiketahui kubus dengan panjang rusuk 12 cm. Tentukan jarak titik A ke titik kubus garis titik A ke titik C dapat membentuk segitiga. Diketahui bahwa panjang AB 12 cm, sehingga panjang BC adalah 12 mencari panjang garis AC menggunakan rumus PhythagorasMaka panjang garis AC atau jarak antara titik A dan C adalah 12√2 isi teorema Phythagoras?Siapa yang menciptakan teorema Phythagoras?Sebutkan rumus teorema Phythagoras?
Top1: Diketahui sebuah balok ABCDEFGH dengan panjang AB 8 Cm,BC 6 Cm Top 2: Diketahui balok ABCD.EFGH dengan panjang AB = 8 cm - Roboguru
1 Tinjauan Geometris Perbandingan vektor Dalam operasi aljabar vektor kita tidak mengenal pembagian dua vektor. Dalam hal ini kita hanya menentukan perbandingan panjang dua vektor, atau perbandingan ruas garis. Secara geometris terdapat tiga aturan perbandingan ruas garis, yaitu Catatan Bentuk a dapat dinyatakan dalam kalimat “P membagi AB di dalam dengan perbandingan m n Bentuk b dan c dapat dinyatakan dalam kalimat “P membagi AB di luar dengan perbandingan m n Untuk lebih jelasnya ikutilah contoh soal berikut ini 01. Diketahui sebuah ruas garis AB dengan panjang 9 cm. Jika AP PB = 2 1, gambarlah letak titik P Jawab 02. Diketahui sebuah ruas garis AB dengan panjang 4 cm. Jika AP PB = –2 1, gambarlah letak titik P Jawab 03. Diketahui sebuah ruas garis AB dengan panjang 4 cm. Jika P membagi AB di luar dengan perbandingan panjang 2 3, maka gambarkanlah letak titik P Jawab 2 Tinjauan Analitis Perbandingan Vektor Vektor posisi adalah vektor yang berpangkal di O0,0 dan dilambangkan dengan satu huruf kecil, sehingga Sebagai contoh diketahui A2, -3, 4 maka vektor posisi a adalah a = 2 i – 3 j + 4 k Jika OA + AB = OB Sebagai contoh jika diketahui A2, -1, 6 dan B-3, 2, 4 maka Menurut rumus perbandingan ruas garis Sehingga untuk AAx, Ay, Az dan BBx ,By, Bz serta PPx, Py, Pz terletak segaris dengan AB dan memiliki perbandingan AP PB = m n, maka berlaku 04. Misalkan P, Q dan R adalah tiga titik yang segaris dan berlaku PR RQ = –2 5 maka nyatakanlah vektor r dalam p dan q Jawab 05. Jika titik A, B dan P kolinier dengan perbandingan AP PB = –4 3 maka nyatakanlah vektor a dalam p dan b Jawab 06. Diketahui dua titik A6, 5, –5 dan B2, –3, –1 serta titik P pada AB sehingga AP PB = 3 1. Tentukanlah koordinat titik P Jawab AP PB = 3 1 07. Diketahui titik P2, –1, 3 dan R2, 4, 8 serta titik Q pada PR dengan perbandingan PR QR = 5 3. Tentukanlah koordinat titik Q Jawab PR QR = 5 3 PR RQ = 5 –3 08. Diketahui tiga titik yang segaris yaitu A7, 7, –2 dan C–3, 1, 4 dan B sehingga berlaku AC = ⅔ AB. Tentukanlah koordinat titik B Jawab Dua buah vektor dikatakan segaris kolinier jika kedua vektor itu sejajar atau terletak pada satu garis yang sama.. Misalkan terdapat tiga vektor yang segaris, seperti gambar berikut ini Jadi vektor a dan b dikatakan segaris jika terdapat nilai k є Real sehingga a = k. b Sedangkan tiga titik A, B dan C dikatakan segaris jika terdapat k є Real sehingga AB = k. AC Untuk lebih jelasnya ikutilah contoh soal berikut ini 10. Manakah diantara ketiga vektor berikut ini merupakan vektor yang segaris a = 2i – 4j + 5k , b = 8i – 16j + 10k c = 6i – 12j + 15k Jawab 11. Jika vektor a = 2 i – j + x k dan b = –6i + y j + 12 k segaris, maka tentukanlah nilai x dan y Jawab 12. Diketahui tiga titik yang segaris kolinier yaitu A2, –1, p, B8, –9, 8 dan Cq, 3, 2. Tentukanlah nilai p dan q Jawab PanjangBD dapat ditentukan dengan perbandingan ruas garis sejajar pada segitiga. Pada segitiga tersebut, sisi DE yang sejajar dengan BC, sehingga diperoleh dua buah segitiga yang sebangun yaitu ΔADE dan ΔABC. Ini berarti, salah satu perbandingan sisi bersesuaiannya adalah: AD AB = DE BC ⇔ (3+p) 3 = 3 2 ⇔ 2(3 + p) = 3(3) ⇔ 6 + 2p = 9

Diketahui limas segiempat beraturan dengan ruas garis AB = BC = 5√2 cm dan TA = 13 cm. Hitunglah jarak titik A ke ruas garis TC...Pembahasan Diketahui Panjang ruas garis AB = BC = 5√2 cmPanjang ruas garis A = 13 cmDitanyakan jarak titik A ke ruas garis TC...?Jawab Misal titik tengah garis TC = A',Sehingga kita ilustrasikan soal ke dalam bentuk gambar. Maka Selanjutnya kita perjelas gambar segitiga ABC dari gambar di atas, maka Dari gambar di atas dapat kita cari panjang diagonal dari alas limas segiempat maka AC = √AB² + BC² = √5√2² + 5√2² = √ + = √50 + 50 = √100 = 10 cmSelanjutnya kita akan mencari tinggi limas, yaitu panjang segitiga AOT membentuk segitiga siku-siku, maka kita bisa mencari panjang TO menggunakan teorema = 1/2 AC = 1/2 x 10 = 5 cmTO = √AT² - AO² = √13² - 5² = √169 - 25 = √144 = 12 cmKemudian, kita akan mencari panjang AA' dengan menggunakan perbandingan dua segitiga, maka 1/2 x AC x TO = 1/2 x TC x AA'1/2 x 10 x 12 = 1/2 x 13 x AA'10 x 12 = 13 x AA'120 = 13AA'120/13 = AA'93/13 cm = AA'Jadi, jarak titik A ke ruas garis TC adalah 93/13 pembahasan contoh soal mengenai materi bangun ruang limas segiempat beraturan. Semoga bermanfaat dan mudah untuk dipahami yahh. Semangat dan terimakasih temen-temen.. Advertisement

Ringkasan . nyatakan sudut² berikut ini sebagai sudut lancip,tumpul,siku² a.1/6 sudut lurus .Diketahui sebuah segitiga siku-siku di A dengan besar sudut B adalah 35o. Hitung nilai x jika sudut C nya adalah sebesar 5x. . Diketahui suku ke4 dan suku ke6 pada suatu barisan geometri adalah U4=54 dan U6=486.
Selasa, 22 Desember 2020 Edit Berikut ini adalah pembahasan dan Kunci Jawaban Matematika Kelas 7 Semester 2 Halaman 129 - 131 Bab 7 Garis dan Sudut Ayo Kita berlatih Hal 129 - 131 Nomor 1 - 9. Kunci jawaban ini dibuat untuk membantu mengerjakan soal matematika bagi kelas 7 di semester 2 halaman 129 - 131. Semoga dengan adanya pembahasan serta kunci jawaban ini adik-adik kelas 7 dapat menyelesaikan tugas Garis dan Sudut Matematika Kelas 7 Semester 2 Halaman 129 - 131 yang diberikan oleh bapak ibu/guru. Kunci Jawaban Matematika Kelas 7 Halaman 129 - 131 Ayo Kita Berlatih 1. Salinlah dua garis berikut. Kemudian dengan menggunakan jangka dan penggaris bagilah masing-masing garis menjadi 7 bagian yang sama panjang. Jawaban Langkahnya,1. Ukur panjang garis dengan penggaris2. Bagi hasil pengukuran dengan 73. Rentangkan jangka selebar hasil pengukuran4. Letakkan jarum jangka ke pada ujung garis5. Buat penanda dengan jangka pada garis6. Ulangi cara ke 5 pada penanda yang baru 2. Salinlah dua garis berikut. Kemudian bagilah masing-masing garis dengan perbandingan 2 3. Jawaban Langkahnya, 1. Ukur panjang garis dengan penggaris 2. Bagi hasil pengukuran dengan 5 3. Rentangkan jangka selebar 2 x hasil pengukuran 4. Letakkan jarum jangka ke pada ujung garis 5. Buat penanda dengan jangka pada garis 3. Diketahui panjang ruas garis AB adalah 12 cm. Bagilah ruas garis AB tersebut menjadi 5 bagian sama panjang. Jawaban Langkahnya, 1. Bagi 12 dengan 5 2. Rentangkan jangka selebar hasil bagi3. Letakkan jarum jangka ke pada ujung garis 4. Buat penanda dengan jangka pada garis 5. Ulangi cara ke 4 pada penanda yang baru 4. Perhatikan gambar berikut. Tentukan nilai p. Jawaban AD / CD = BE / CE3 / 9 = p / 12p = 12 x 3 / 9p = 4 cmJadi, nilai p adalah 4 cm. 5. Perhatikan gambar berikut. Tentukan nilai x. Jawaban 3 / 6 = x / 4 + 6x = 10 x 3 / 6x = 5Jadi, nilai x adalah 5 cm. 6. Perhatikan gambar berikut Tentukan nilai x dan y. Jawaban AD / BD = AE / CE6 / 4 = x / 2x = 6 x 2 / 4x = 3 cmDE / AD = BC / AD + BDy / 6 = 10 / 6 + 4y = 1 x 6y = 6 cmJadi, nilai x = 3 cm dan y = 6 cm. 7. Perhatikan gambar berikut Tentukan panjang AB. Jawaban EF = CD x AE + AB x DE / AE + DE9,8 = 8 x 7 + AB x 3 / 7 + 39,8 = 56 + 3AB / 1098 = 56 + 3AB3AB = 98 - 56AB = 42 / 3AB = 14 cmJadi, panjang AB adalah 14 cm. 8. Diketahui titik E, F, dan G pada trapesium ABCD. Sisi FE sejajar dengan sisi AB. Jika AB = 7, DC = 14, DG = 8, FG = 4, GB = x , dan GE = y , maka nilai x + y adalah Jawaban FG / AB = DG / BD4 / 7 = 8 / 8 + x4 x 8 + x = 8 x 732 + 4x = 564x = 56 - 32x = 24 / 4x = 6EG / CD = BG / BDy / 14 = x / x + 8y / 14 = 6 / 6 + 8y = 6 / 14 x 14y = 6x + y = 6 + 6 = 12Jadi, nilai x + y adalah 12. 9. Perhatikan gambar berikut. Diketahui Trapesium ABCD, dengan AB//DC//PQ. Jika perbandingan AQ QC = BP PD = 3 2. Jawaban AB / x = BD / PD 10 / x = 2 + 3 / 2 5x = 20 x = 4 cmDC / PQ + x = AC / AQ 20 / PQ + 4 = 3 + 2 / 3 PQ + 4 = 60/5 PQ = 8 cmJadi, panjang ruas garis PQ adalah 8 cm.
dTWGYU.
  • 5csbkf3fli.pages.dev/512
  • 5csbkf3fli.pages.dev/599
  • 5csbkf3fli.pages.dev/328
  • 5csbkf3fli.pages.dev/571
  • 5csbkf3fli.pages.dev/332
  • 5csbkf3fli.pages.dev/320
  • 5csbkf3fli.pages.dev/49
  • 5csbkf3fli.pages.dev/240
  • diketahui panjang ruas garis ab adalah 12 cm